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We show, using the symmetry properties of the coupled-wave equations for the transmission and reflection
geometries, that any readout characteristic of dynamic spatially nonuniform index gratings in photorefractive
crystals can be explicitly expressed through the characteristics of the recording light beams. This approach is
applied to describe the impact of beam coupling on the diffraction efficiency of dynamic gratings and on the
output intensities of the light beams at instantaneous input phase changes(light grating translation). Further
implications of this general approach are discussed.

DOI: 10.1103/PhysRevE.69.066603 PACS number(s): 42.65.Hw

I. INTRODUCTION

Photorefractive nonlinear-optical phenomena are caused
by dynamic processes of buildup of refractive index gratings
and Bragg diffraction of light waves from these gratings
[1,2]. They include wave amplification, phase conjugation,
light scattering, optical oscillations, and many other impor-
tant effects. The major constituents of grating formation are
charge separation under light and the linear electro-optic ef-
fect. The relevant materials include numerous photosensitive
crystals and polymers[2–4].

Typically, the photorefractive nonlinearity is already
strong under the conditions of CW experiments. At the same
time, it is rather inertial owing to the slowness of charge
separation under low light intensities[2,3]. This distinctive
feature allows to employ effective methods for the testing
and control of nonlinear effects. Imagine that the input con-
ditions for the incident light beams are changed during a
time period which is much shorter than the characteristic
response time of medium. The refractive index profile re-
mains practically unchanged and the changes of the output
optical characteristics are fully due to different ways of prob-
ing the recorded spatial grating.

The simplest testing method consists in measuring the dif-
fraction efficiency of the dynamic grating by instantaneous
blocking one of the incident recording light beams[2]. This
instantaneous diffraction efficiency contains information on
the amplitude, but not the spatial position(the phase) of the
grating. The so-called grating translation technique allows to
measurein situ both the amplitude and phase of dynamic
index gratings[4–6]. This method employs a strong momen-
tary phase modulation of one of the input beams which
changes the position of the light fringes. The third important
implication of the readout properties is the feedback-
controlled beam coupling[7–10]. In this case, the readout
characteristics obtained with the help of an auxiliary weak
phase modulation are used to adjust the input phase via an
electronic feedback loop. This loop stabilizes photorefractive
setups and, at the same time, modifies strongly the character
of beam coupling.

Until recently, employment of the readout characteristics
was overwhelmingly based on the Kogelnik relations for

spatially uniform index gratings[11]. In other words, the
dynamic distortions of the grating amplitude and phase were
neglected. This approach is justified for sufficiently thin
samples exhibiting weak nonlinear-optical effects but it is
not valid when the energy and/or phase exchange between
the recording beams is strong. These cases are indeed of
great importance for applications.

To find the readout characteristics in the simplest case of
two-wave coupling, see Fig. 1, it is necessary, in the general
case, to calculate the grating profile at the readout moment
and to solve the coupled-wave equations for the light ampli-
tudes once more using the boundary conditions relevant to
the particular readout process. A few particular solutions to
this readout problem are known to date. Steady state diffrac-
tion efficiency has been calculated for the transmission ge-
ometry using a particular microscopic model of the photore-
fractive response[12]. It was found that the nonlinear
distortions lead to strong modifications of the Kogelnik rela-
tions. The importance of taking into account the nonlinear
distortions for analysis of the grating translation technique
data was recognized recently[13]. Controversial attempts to
take these corrections into account are presented in Ref.[14].

The first aim of this paper is to show that the symmetry of
the conventional coupled-wave equations for two-wave mix-
ing enables one to express algebraically any readout charac-
teristic through the output characteristics of the recording
light waves. In other words, the readout problem is reduced
to the problem of wave-coupling modeling. Correspondingly,
the tedious procedure of resolving the coupled-wave equa-
tions with nonconstant coefficients becomes unnecessary.
This is valid for both transmission and reflection geometries
of wave coupling. Furthermore, the general relations ob-
tained at this stage are sufficient to formulate properly the
problem of feedback controlled beam coupling.

The second aim is to apply the general relations to par-
ticular cases to illustrate the influence of beam coupling on
the diffraction efficiency and the characteristics of the grat-
ing translation technique. Discussion of experimental details
and fitting experimental curves is beyond the scope of this
paper.

PHYSICAL REVIEW E 69, 066603(2004)

1539-3755/2004/69(6)/066603(10)/$22.50 ©2004 The American Physical Society69 066603-1



The symmetry properties of the coupled-wave equations
have been used recently for analysis of particular photore-
fractive effects[15,16]. A full-scale formulation of the novel
approach to the description of the readout processes is, how-
ever, still missing. Most part of the results presented below
are different; a few known particular results are reproduced
with the different method to exhibit its efficiency.

II. BASIC RELATIONS

We suppose that two light waves of the same frequency,
referred to as signal and reference waves, propagate in a
photorefractive nonlinear medium. Their amplitudes,S and
R are slowly varying functions of the timet and the propa-
gation coordinatez. The waves are coupled via Bragg dif-
fraction from the electro-optic gratingEscsrWd,

Esc= EK eiKW ·rW + c.c. s1d

The grating vectorKW is the difference of the light wave vec-
tors, and the grating amplitudeEK depends generally onz
and t.

In what follows we consider the transmissionsTd and re-
flection sRd coupling geometries, see Figs. 1(a) and 1(d). In

the T andR cases the grating vectorKW is perpendicular and

parallel to thez axis, whereas thez components of the light
wave vectors are of the same and of the opposite signs, re-
spectively.

For the T geometry the coupled-wave equations for the
light amplitudesS andR can be presented in the form[2]

dS/dz= ikEKR,

dR/dz= ikEK
* S, s2d

wherek=pn3r /l, n is the nonperturbed refractive index,l is
the light wavelength,r is the relevant electro-optic coeffi-
cient, and the asterisk means taking the complex conjugate.
The overall intensityI0 is constant during propagation in the
T case,I0= uSszdu2+ uRszdu2=const. It can be regarded as the
input intensity.

For theR geometry the coupled-wave equations are

dS/dz= ikEKR,

dR/dz= − ikEK
* S. s3d

The minus sign in the second line stems from the negative
propagation direction of theR wave. The difference of the
light intensitiesD is conserving during propagation in this
case,D= uRszdu2− uSszdu2=const.

The fact that the sets(2) and(3) do not include explicitly
the time variablet means that light follows adiabatically
slow changes of the grating amplitudeEK=EKsz,td.

The coupled-wave equations can be applied to two differ-
ent physical problems.

The first one is determination of the readout characteris-
tics of the grating. The grating amplitudeEKsz,td is treated
here as a known complex function, and the differential equa-
tions for S and R are to be solved with proper boundary
conditions. While the readout problem is linear, it cannot be
solved analytically(or in quadratures) in the general case.
The well known particular case when Eqs.(2) or/and(3) can
be solved is the case of a spatially uniform grating,EKszd
=const. The corresponding simple relations forR andS are
known as Kogelnik theory[11]. They are often in use even in
the situations where the assumption of spatial uniformity
cannot be justified.

The second problem is the description of beam coupling
during grating recording. In this case, the set(2) or (3) has to
be supplemented by a material equation, which couples the
grating amplitudeEK with the light amplitudesR andS. The
particular form of this model equation, which depends on the
charge transport properties of the material, is not important
for us at this stage. It is essential, however, that the charac-
teristic response(buildup) time entering the material equa-
tion is long enough to allow short-time changes of the
boundary conditions for the light amplitudes(changes of the
readout conditions) without significant changes inEK. The
characteristic time ranges typically from 10−2 to 102 s in
photorefractive continuous-wave experiments[1,2]. Another
important feature is that the grating does not remain spatially
uniform when the beam coupling is strong.

FIG. 1. Schematic representation of the main processes for theT
geometry(a–c) and theR geometry(d–e). The subfigures(a) and
(d) depict the recording processes, whereas the subfigures(b), (c),
(e), and (f) illustrate the readout processes relevant to the funda-

mental amplitudesS̃s,rszd and R̃s,rszd. The parallel lines show the
grating fringes.
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Our main concern is the readout characteristics of the
grating during strong beam coupling. The standard approach
to this problem is as follows: First, using analytical or/and
numerical tools, it is necessary to solve the nonlinear prob-
lem of beam coupling to find the light amplitudesR andS.
Second, using again the material equation, to find the depen-
denceEKszd. Third, to substituteEK into the readout equa-
tions and solve them once more with new boundary condi-
tions for R andS.

We will show below that knowledge of the amplitudes of
the recording waves(or even combinations of these ampli-
tudes) allows to solve explicitly any readout problem using
pure algebraic means.

III. READOUT CHARACTERISTICS

Until this point our notationS, R for the light amplitudes
was general. From now on we specialize it to avoid confu-
sion. We shall setS=S, R=R for the amplitudes of the re-

cording waves andS=S̃, R=R̃ for the light amplitudes dur-
ing readout. Furthermore, we shall consider sequentially the
T andR cases.

A. General properties: Transmission geometry

Let R andS be the amplitudes of the reference and signal
waves during recording andEK be the corresponding grating
amplitude. These quantities are generally functions ofz and
t. It is implied thus that we know a particular solution of the
set (2) for R andS which corresponds to a particular choice
of the input light amplitudes and to a particular(non-
specified) material equation.

To describe the readout characteristics of the grating at an
arbitrary time momentt, we have to solve the set(2) for S
=S̃ and R=R̃ with the same spatial profileEKszd but new
input values of the light amplitudes. The general solution of
this linear problem can, as known from basic mathematics,
be presented as a linear combination of two particular inde-

pendent solutions forR̃ and S̃. One particular solution is
known, this is the solution for the recording amplitudes,

R̃part1=R, S̃part1=S.
To find the second particular solution, we make the com-

plex conjugation of Eqs.(2). One can make sure then that the

pair R̃part2=S* , S̃part2=−R* represents this solution for theT
geometry. The above relations stem indeed from the symme-
try properties of the coupled-wave equations.

Consequently, the general solution of the readout problem
is

S S̃

R̃
D = c1SS

R
D + c2S− R*

S* D , s4d

where c1 and c2 are arbitrary constants. As soon as the
boundary conditions for a particular readout process[for

S̃s0d andR̃s0d] are formulated, one can express algebraically
c1,2 through the input and output values of the recording
amplitudes and calculate in the next step the output values

S̃sdd and R̃sdd, whered is the thickness of the sample, see
Fig. 1(a).

One kind of readout problem plays a fundamental role for
understanding of the properties of diffraction and transmis-
sion through thick dynamic index gratings and also for the
description of many other readout processes. Let the incident
R beam be blocked and the grating recorded to the momentt
be tested by theSbeam of a unit amplitude, see Fig. 1(b). We

denote as the corresponding fundamental amplitudesS̃s and

R̃s; they are functions of the propagation coordinatez and

time t. The boundary conditions for them areS̃ss0d=1,

R̃ss0d=0. The convenience of our notation for the fundamen-
tal amplitudes becomes clear if the reader accepts a simple
mnemonic rule — the subscript marks the type of the only
readout beam. Using Eq.(4), we obtain c1=S0

* / I0, c2=
−R0/ I0 and therefore

S̃s = sS0
* S+ R0 R*d/I0,

R̃s = sS0
* R− R0 S*d/I0, s5d

whereS0=Ssz=0d andR0=Rsz=0d.
Similarly we introduce the fundamental amplitudesS̃r, R̃r,

that correspond to testing of the same grating by theR beam

of a unit amplitude and meet the boundary conditionsS̃rs0d
=0, R̃rs0d=1, see Fig. 1(c). One can make sure that

S̃s = R̃r
* , S̃r = − R̃s

* . s6d

One pair of the fundamental amplitudes is easily expressed
through the other. It is evident also that

uS̃su2 + uR̃su2 = uS̃ru2 + uR̃ru2 = 1. s7d

The fundamental amplitudes fully characterize the diffrac-
tion properties of the grating in an absolute scale. At the
same time, there is one-to-one correspondence between them
and the recording amplitudes. And lastly, the fundamental
amplitudes provide a highly useful basis for decomposition
of the light amplitudes(during recording or readout) into the
transmitted and diffracted components. This important issue
becomes evident when we express the amplitudesR and S
throughS̃s,r and R̃r,s,

Sszd = S0 S̃sszd + R0 S̃rszd,

Rszd = R0 R̃rszd + S0 R̃sszd. s8d

In accordance with the definition of the fundamental am-

plitudes, see also Figs. 1(b) and 1(c) S0 S̃sszd and R0 S̃rszd
are the transmitted and diffracted components of theS beam

while R0 R̃rszd and S0 R̃sszd are the transmitted and dif-
fracted components of theR beam.

The diffraction efficiency of the refractive index gratingh
is the simplest experimental readout characteristic. Let one
of the incident writing beams, see Fig. 1(a), be blocked for a
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moment. Thenh is defined as the intensity ratio of the output
diffracted beam to the single input beam. In accordance with
this definition we have

h = uR̃ssddu2 = uS̃rsddu2. s9d

The above relations prove also that irrespective of the
spatial profileEKszd the result of measurement ofh does not
depend on which of the input beams is blocked.

Using Eqs.(5) and (6) we represent the diffraction effi-
ciency in the following explicit form:

h =
b0 + bd − 2sb0bdd1/2 cosc

s1 + b0ds1 + bdd
, s10d

where b0= uR0u2/ uS0u2 and bd= uRdu2/ uSdu2 are the input and
output intensity ratios for the recording beams whilec
=argsRdSdR0

*S0
*d=wd

r +wd
s−w0

r −w0
s is a combination of their

input and output phases.
Consider now the grating translation technique. It consists

of introduction of a variable momentary phase shiftw into
one of the input writing beams. Let it be the signal beam.

Then the boundary conditions during readout areS̃0=S0 eiw,

R̃0=R0. Using Eqs.(8) we obtain immediately the general
relations for the output amplitudes:

S̃sdd = S0 eiw S̃ssdd + R0 S̃rsdd,

R̃sdd = R0 R̃rsdd + S0 eiw R̃ssdd. s11d

In an experiment the measurable quantities are the changes
of the output intensities at the phase scanning. The output

intensity changesdISswd=fuS̃sddu2− uSsddu2g, dIRswd=fuR̃sddu2
− uRsddu2g can be presented in the form

dIS,R/I0 = ± fAT sin w + BTs1 − coswdg, s12d

which is consistent with the conservation of the total output
intensity. The dimensionless parametersAT andBT character-
ize the output intensity oscillations which are symmetric and
asymmetric against the zero level, respectively; these coeffi-
cients can be determined experimentally. Using Eqs.(5) and
(11) we express them explicitly through the recording char-
acteristics,

AT = sm0md/2dsin c,

BT = sm0 wd − md w0 coscd/2, s13d

wherem=2uSR* u / I0 is the contrast of the recording light in-
terference pattern,w=suRu2− uSu2d / I0 the normalized intensity
difference for the recording beams, and the subscripts 0 and
d mean, as usual, taking the recording characteristics atz
=0 andd. The phase differencec has been introduced ear-
lier. The parametersm, w, andb are coupled with each other
by the simple relations:m=s1−w2d1/2=2b1/2/ sb+1d, w=sb
−1d / sb+1d; the use of these parameters is the matter of con-
venience.

One more application of our approach is the description
of the feedback-controlled beam coupling. In this case an
electronic feedback loop adjusts the input phase of the re-
cordingS beam,ws

0, in such a way to keep the phase differ-
enceF between the diffracted and transmitted components
of the output signal beam equalp /2 or −p /2. Experimental
implementation of this idea was correct from the beginning
of the studies[7] but an adequate description of the operation
mode was accomplished only recently[10]. It is based on the
notion of the fundamental amplitudes.

To explain the operation principle, we make use of Eqs.
(8) to decompose the recording amplitudeS=S into the sum
of the transmitted and diffracted components. According to
this presentation, the output phase differenceF between
these components is

Fstd = wrs0,td − wss0,td + argfS̃rsd,tdS̃s
*sd,tdg. s14d

The conditionF= ±p /2 can be satisfied by adjustment of

ws
0std [with wr

0std=const] unless the productuS̃rsddS̃s
*sddu

=Îhs1−hd is not zero. In the case ofh=0 or 1 the phase
differenceF makes no sense and the phase adjustment is not
possible.

Our approach allows thus to formulate the feedback prob-
lem irrespective of the nonlinear distortions of the refractive
index profile. It is the true basis for describing of the feed-
back controlled beam coupling. The results of nonlinear
modeling are in accordance with the experimental observa-
tions; they reveal highly unusual features of the feedback
controlled beam coupling[10]. The formulation of the feed-
back conditions in the terms of spatially uniform index grat-
ing, used initially, is not valid for the samples providing high
values of the diffraction efficiency.

How to implement the feedback conditionF= ±p /2
experimentally? An auxiliary oscillating componentdws

0

=q cosvt has been introduced into the input phase of the
signal wave to accomplish the feedback[7,9]. The oscillation
amplitude q is very small and the modulation frequency
v exceeds considerably the inverse response time of the
medium. The effect of this auxiliary phase shift on the
recording process is negligible but it is sufficient for readout.
In accordance with Eqs.(8), the output intensity of the
signal wave acquires the contributions oscillating as
sin vt and cos 2vt. The amplitudes of the intensity
oscillations are Iv=2uS0R0uÎhs1−hdq sin F and I2v

=0.5uS0R0uÎhs1−hd q2 cosF. Using I2v as an error signal
and controlling the sign ofIv, one can keep electronically the
phase differenceF equal top /2 or −p /2.

B. General properties: Reflection geometry

With some changes, the results of the preceding section
can be employed for theR case.

If we consider the pair of the recording amplitudesR, Sas
the first basic vector for constructing the general solution for

R̃ and S̃, the second basic vector can be chosen asS* , R* . It
is evident from the structure of the complex conjugated set
(3). Consequently, the general solution to the readout prob-
lem is
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S S̃

R̃
D = c1SS

R
D + c2SR*

S* D , s15d

compare with Eqs.(4).
In the next step we find out the fundamental amplitudes

characterizing the diffraction and transmission properties of
the reflection grating at an arbitrary time momentt. The fun-

damental amplitudesS̃sszd, R̃sszd meet the boundary condi-

tions S̃ss0d=1, R̃ssdd=0, they correspond to readout of the
grating with theS beam of a unit amplitude, see Fig. 1(e).
The second pair of the fundamental amplitudes,S̃rszd, R̃rszd,
meets the boundary conditionsS̃rs0d=0, R̃rsdd=1; it corre-
sponds to readout of the same grating with theR beam of a
unit amplitude, Fig. 1(f). Since the difference of the light
intensities is conserving in theR case, we have

uS̃su2 − uR̃su2 = uR̃ru2 − uS̃ru2, s16d

compare with Eq.(7).
Using Eq.(15) one can express algebraically the funda-

mental amplitudes through the recording amplitudesR andS.
We have

S̃s = sSd
*S− RdR

*d/I1,

R̃s = sSd
*R− RdS

*d/I1, s17d

for S̃s and R̃s, and

S̃r = sS0R
* − R0

*Sd/I1,

R̃r = sS0S
* − R0

*Rd/I1, s18d

for S̃r and R̃r, whereI1=S0Sd
* −R0

*Rd is a complex constant.

As follows from here, the pairsS̃s,R̃s and S̃r ,R̃r are

coupled with each other by the relationsS̃s=R̃r
*s0↔dd ,S̃r

=R̃s
*s0↔dd, which are similar to the relations(6) for the T

case. The sign↔ means interchanging of the subscripts 0
and d. Representation of the amplitudes as the sums of the
diffracted and transmitted components, which is similar to
that given by Eqs.(8), also holds true:

Sszd = S0 S̃sszd + Rd S̃rszd,

Rszd = Rd R̃rszd + S0 R̃sszd. s19d

It is applicable to both recording and readout processes. Its
meaning is illustrated by Figs. 1(d)–1(f).

The diffraction efficiency of the reflection grating is given
by

h = uR̃ss0du2 = uS̃rsddu2. s20d

As follows from here, the value ofh does not depend on
which of the input writing beams(S or R) is blocked.

Using Eqs.(17) and (18) we expressh by the intensity
ratio for the recording wavesb= uRu2/ uSu2 (taken atz=0 and
d) and the phase differencec=argsRdSdR0

*S0
*d,

h =
sbd/b0d1/2 + sbd/b0d−1/2 − 2 cosc

sbdb0d1/2 + sbdb0d−1/2 − 2 cosc
. s21d

The general expression for the output amplitudes, which
is relevant to the phase modulation of the inputS beam dur-
ing readout(the grating translation technique) follows from
Eqs.(19):

S̃szd = S0 eiw S̃sszd + Rd S̃rszd,

R̃szd = Rd R̃rszd + S0 eiw R̃sszd. s22d

The output intensity changesdISswd=fuS̃sddu2− uSsddu2g and

dIRswd=fuR̃s0du2− uRs0du2g can be presented in the form

dIS,R/I in = ± fAR sin w + BRs1 − coswdg, s23d

where I in= uS0u2+ uRdu2 is the total input intensity for the re-
cording waves. Using Eqs.(17) and (18) and recalling that
the intensity difference is the conserving quantity, we obtain
for the modulation amplitudesAR andBR:

AR =
g sin c

sb0bdd1/2 + sb0bdd−1/2 − 2 cosc
,

BR =
gfsbd/b0d1/2 − coscg

sb0bdd1/2 + sb0bdd−1/2 − 2 cosc
, s24d

with g=2s1−b0ds1−bdd / s1−b0bdd. Again, the output inten-
sity changes during the translation are expressed explicitly
through the input and output intensity ratios during recording
and the phasec.

Formulation of the feedback conditions for theR geom-
etry is not much different from this described above for theT
case. The first results on the feedback controlled beam cou-
pling in the reflection geometry have been reported only re-
cently [17,18].

It is worth mentioning that all above relations are free of
model assumptions about the recording process. In other
words, they are applicable to any particular model of the
grating formation. As soon as this model is specified and the
recording characteristics are calculated(in steady state or
during a transient process), we can describe immediately all
readout characteristics. Below we consider representative ex-
amples of material models.

IV. PARTICULAR RESULTS

A. Models of nonlinear response

By applying the general relations, we shall restrict our-
selves to the case of steady state. We shall assume the fol-
lowing fairly general relation between the grating amplitude
EK and the recording light amplitudesS andR [1,2],
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EK = g
SR*

uSu2 + uRu2
, s25d

whereg=g8+ ig9= uguexpsiud is a complex parameter charac-
terizing the type and strength of the photorefractive nonlin-
ear response. The absolute value of the ratio in the right-hand
side is the half contrast of the recording light interference
pattern,m/2=uSR* u / suSu2+ uRu2d. The value ofu=argsgd is
nothing else than the phase shift between the light and grat-
ing fringes. Ifg is real, the phase shiftu is 0 orp; this is the
case of local nonlinear response. Ifg is imaginary, the phase
shift is ±p /2; this corresponds to the nonlocal response. In
the general caseg is complex, i.e., the nonlinear response is
mixed.

It is possible to expressg through the applied electric field
(if present), the grating vectorK, and the material parameters
such as mobility-lifetime product for photoexcited carriers
and the trap concentration using particular microscopic mod-
els of light-induced charge transport[1–3]. Determination of
the dependences ofg8 ,g9 (or ugu ,u) on the variable experi-
mental parameters allows one to judge about the mechanisms
of charge transfer.

Calculation of the necessary steady-state recording char-
acteristics does not present serious difficulties. Taking into
account the conservation laws for theT and R cases, it is
possible to find at first the light intensities and to calculate
then the phase dependencecszd.

To get a reference point for analysis of the role of cou-
pling effects, we shall consider also a model which ignores
the influence of beam coupling on the grating amplitude.
Within this uniform-grating model the grating amplitude is
constant,EK=EK

0, where

EK
0 = g

SinRin
*

uSinu2 + uRinu2
, s26d

The subscriptin means taking the input values of the record-
ing amplitudes. For theT geometry we haveSin=S0, Rin
=R0, whereas in theR case one should setSin=S0, Rin=Rd.

Employment of the general relations for the readout char-
acteristics within the uniform-grating model gives no real
advantages because of the simplicity of the direct calcula-

tions of the amplitudesR̃szd and R̃szd. It is useful merely to
make sure that the general relations lead here to the known
results of the Kogelnik theory[11].

As follows from the structure of Eqs.(25) and (26) and
the coupled-wave equations(2) and(3), the parametersg and
k enter the output characteristics via the dimensionless prod-
uct p=kgd. We shall refer to the complex parameterp=p8
+ ip9 as to the coupling strength. The absolute value of the
coupling strength,upu, can easily exceed 5–10 in photorefrac-
tive experiments[1,2].

B. Transmission geometry

Solution of Eqs.(2) and(25) for the recording amplitudes
results in the following relations for the output intensity ratio
bd= uRdu2/ uSdu2 and the phasec=argsRdSdR0

*S0
*d:

bd = b0 e2p9, c = p8. s27d

The energy exchange between the recording beams is con-
trolled by the imaginary part of the coupling strengthp9
whereas the real partp8 is responsible for the phase ex-
change.

By substituting Eqs.(27) into Eq. (10) we obtain for the
diffraction efficiency,

h =
m0

2

coshp9 − cosp8

coshsp9 + p0d
, s28d

where m0=2Îb0/ s1+b0d is the input light contrast andp0

= lnÎb. This is not different from the result obtained by the
direct calculations with no use of the symmetry properties
[12].

Within the uniform-grating model, see Eq.(26), the dif-
fraction efficiency is given by the Kogelnik expression,h
=sin2sm0upu /2d. For nonlinearly thin samples,upu;ukgdu
&1, it gives the same result as Eq.(28), namely, h
.sm0upu /2d2. For nonlinearly thick crystals the effects of
beam coupling become important.

The solid lines in Fig. 2(a) show the functionhslg b0d for
the case of local responsesp9=0d and several values ofp8
=kg8d. This function is even and it does not depend on the
sign ofp8. The dotted lines show the dependences calculated
within the uniform-grating model. One sees that the influ-
ence of the coupling effects is absent forb0=1. Whenb0
Þ1 the coupling effects become essential forup8u*2. In
contrast to the Kogelnik theory, the exact relation predicts
decrease ofh with increasingulg b0u for any value ofp8.

FIG. 2. Diffraction efficiency versus the input intensity ratio for
theT geometry and the cases of local(a) and nonlocal(b) nonlocal
response. The solid and dotted lines correspond to the exact rela-
tions and the uniform-grating model. The curves 1,18, 2 ,28, and
3,38 are plotted for the values of the coupling strength 1, 1.7, and 3,
respectively.
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The influence of the coupling effects is even more pro-
nounced in the case of nonlocal response,p8=0, see Fig.
2(b). The functionhslg b0d is not even here because of the
unidirectional energy transfer[1,2]; the diffraction efficiency
can approach unity only for large values ofup9u. The replace-
ment p9→−p9 results in the transformationhslg b0d
→hs−lg b0d.

Now we turn to the grating translation technique. By sub-
stituting Eqs.(27) into Eqs.(13) we obtain for the modula-
tion parametersAT, BT entering the general relation(12):

AT =
m0 sin p8

2 coshsp9 + p0d
,

BT =
m0fsinhsp9 + p0d − sinh p0 cosp8g

2 coshsp9 + p0d
. s29d

Within the uniform-grating model these parameters are given
by

A0
T = m0p8 sinsm0upud/2upu,

B0
T = m0p9 sinsm0upud/2upu. s30d

For nonlinearly thin crystals,upu&1, Eqs.(29) and(30) give
the same result.

Consider the case of equal input intensities,m0=b0=1,
which is important for experiment. The expressions(29) be-
come here especially simple,AT=sin p8 /2 coshp9, BT

=tanhp9 /2. They can serve as a basis for measurements of
the real and imaginary parts of the coupling strength in grat-
ing translation experiments. In the case of local response,
p9=0, we haveBT=B0

T=0 andAT=A0
T=sinsp8d /2; here there

is no effect of beam coupling. This matches with the above
mentioned properties of the diffraction efficiency. For the
nonlocal response, p8=0, we have AT=A0

T=0, BT

=tanhsp9d /2, and B0
T=sinsp8d /2. The coupling effects be-

come important forp8*2, see Fig. 3.

C. Reflection geometry

In this case the input amplitudes of the writing beams are
S0 and Rd, see Fig. 1(d). The parameterssbdb0d1/2,
sbd/b0d1/2, and c entering Eqs.(21) and (24) can be ex-

pressed byp9, the ratiop8 /p9, and the input intensity ratio
bin= uRdu2/ uS0u2. The corresponding relations, obtained by
solving Eqs.(3) and (25), are

sbdb0d1/2 = bin ep9,

sbd/b0d1/2 = sbin ep9 + e−p9d/s1 + bind,

c = sp8/p9dlnsbd/b0d1/2. s31d

Since the influence of coupling effects on the readout prop-
erties was never analyzed in theR case, we consider this
issue in some details.

1. Diffraction efficiency.

An explicit relation forh can be obtained by substituting
Eqs.(31) into Eq. (21). The expression forh relevant to the
uniform-grating model(Kogelnik theory), to be compared
with, is h=tanh2sminupu /2d, where the input light contrast
min=2bin

1/2/ s1+bind. A number of particular cases are of in-
terest.

The limit of nonlinearly thin crystal, upu= ug k du&1. The
exact theory and the uniform-grating model give here the
same result,h.sminupu /2d2&1, and the coupling effects are
negligible.

The case of local nonlinear response, p9=0. The energy
exchange between the recording beams is absent here and the
only nonlinear factor affecting diffraction is the modulation
of the fringe positions. Using Eqs.(21) and (31) we obtain

h−1 = 1 +
sbin − 1d2

4bin sin2fp8sbin − 1d/2sbin + 1dg
. s32d

In the limit bin→1 the numerator and denominator of this
expression tend to zero. By resolving the 0/0 indefiniteness
we haveh=p82/ s4+p82d. Accordingly, the diffraction effi-
ciency grows monotonously with increasingup8u and ap-
proaches unity.

The solid lines in Fig. 4(a) show the exact dependence
hsbind in a logarithmic scale forp9=0 and three representa-
tive values ofp8. The dotted lines show the dependences
relevant to the uniform-grating model. All the curves are
symmetric to the replacementbin by bin

−1. For up8u=1 the
influence of the coupling effects is small, but it is well pro-
nounced forp8*2. The coupling effects always decrease the
diffraction efficiency. By comparing Fig. 4(a) with Fig. 2(a),
one can see not only similarities but also qualitative and
quantitative differences.

The nonlocal response, p8=0. The phasec is zero in this
case so that the fringe positions remain unchanged. At the
same time, the light contrast and the grating amplitude are
modulated across the crystal because of the energy exchange.
The diffraction efficiency is given by the expression

h =
min sinh2sp9/2d

coshsp9 + ln bin
1/2d

. s33d

It is not an even function ofp9 and lnbin. The limiting
values ofh for p9@1 andp9!1 aresbin+1d−1 and binsbin

+1d−1, respectively. Figure 4(b) shows the functionhslg bind

FIG. 3. Dependence of the modulation amplitudeBT on the
coupling strengthp9 for the nonlocal response in theT geometry;
the dotted line is plotted for the uniform-grating model.
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for three representative values ofp9. Its maximum is shifted
to the left forp9.0 and to the right forp9.0; the larger is
the value of the coupling strength, the stronger this shift. It is
interesting that coupling does not affect the maximum value
of hsbind, compare the solid and dotted lines. Qualitatively,
the solid curves in Figs. 2(b) and 4(b) look similar but there
are quantitative differences. In particular, for the same cou-
pling strengthup9u the maximum achievable value ofh is
higher in theR geometry.

Equal input intensities, bin=1. Here we have

h =
1

2

coshp9 + scoshp9d−1 − 2 cosc

coshp9 − cosc
, s34d

with c=sp8 /p9dlnscoshp9d. This expression is useful to ana-
lyze the features of the mixed nonlinear response. Figure 5

shows the dependencehsp9d for two different values of the
ratio p8 /p9. This dependence is symmetrical, inversion ofp9
does not affecth. For small values of the ratiop8 /p9 the
functionhsup9ud increases monotonously from 0 to 1/2. With
increasingup8 /p9u this function becomes oscillating but its
limiting value for up9u→` remains equal 1/2.

2. Grating translation technique.

We restrict ourselves to the simplest case of equal input
intensities,bin= uRdu2/ uS0u2=1. Using Eqs.(24) and (31) it is
easy to obtain for the coefficientsAR, BR entering Eq.(23):

AR =
1

2

tanhp9 sin c

coshp9 − cosc
, BR =

1

2
tanhp9, s35d

where, as earlier,c=sp8 /p9dlnfcoshsp9dg. These relations
have to be compared with the prediction of the uniform-
grating model,

A0
R =

p8 tanhsupu/2d
upu coshsupu/2d

, B0
R =

p9 tanhsupu/2d
upu coshsupu/2d

. s36d

For nonlinearly thin crystals,upu= ukgdu&1, Eqs. (35) and
(36) give indeed the same result.

In the case of local response,p9=0, we obtain for the
intensity changes using Eqs.(23) and (24):

dIS,R

Iin
= ±

2p8

4 + p82sin w. s37d

The oscillation amplitudeARsp8d grows first asp8 /2, expe-
riences a maximum atp8=2 (whereduIS,Ru / I in=1/2, and de-
creases then with increasingp8, see Fig. 6(a). An agreement
with the uniform-grating model takes place forup8u&2.

For the nonlocal response,p8=0, we have

dIS,R

Iin
= ±

tanhp9

2
s1 − coswd. s38d

The oscillation amplitudeBRsp9d approaches monotonously
the values ±1/2 forp9→ ±`. The uniform-grating model is
well applicable forup9u&2, see Fig. 6(b).

V. DISCUSSION

The most general outcome of this study is in reducing the
problem of readout of dynamic index gratings to the record-
ing problem regardless of particular properties of the nonlin-
ear medium. The explicit relations found in Sec. III express
the desirable readout characteristics directly through a re-
stricted set of data on the input and output recording ampli-
tudes.

A different approach has already allowed to investigate
the dynamics of the feedback-controlled beam coupling and
to obtain a number of new particular results for the reflection
coupling geometry, see Sec. IV. The use of this approach is
not, however, restricted to these examples. It can, in particu-
lar, be applied to the transient processes of grating formation;
recording characteristics of these processes admit often a
complete analytical study[2].

FIG. 4. Diffraction efficiency vs the input intensity ratio for the
R geometry and the(a) and nonlocal(b) nonlocal nonlinear re-
sponse. The dotted lines correspond to the uniform-grating model.
The curves 1,18, 2 ,28, and 3,38 are plotted for the values of the
coupling strength 1, 2, and 4, respectively.

FIG. 5. Dependencehsp9d for the input intensity ratiobin=1
and different kinds of nonlinear response; the curves 1, 2, and 3 are
plotted forp8 /p9=2,3, and 4,respectively.
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The general relations between the readout and recording
characteristics can be applied to the problem of modeling of
the material relations for the grating amplitude. These rela-
tions are often the bottleneck of the photorefractive studies
because of complexity of the charge separation processes.
The supplementary information on the recording process,
gained by measuring the readout characteristics, allows one

to judge about validity of models of the nonlinear response.
Some restrictions on our approach are worthy of discus-

sion. One of them is the assumption of scalar beam coupling,
i.e., the absence of polarization coupling. This assumption is
valid for anisotropic photorefractive crystals such as
LiNbO3, BaTiO3, SBN, but is not correct for cubic materials,
such as the sillenite crystalsfBi12sSi,Ti,GedO20g, and semi-
conductors GaAs, CdTe, see Ref.[19] and references therein.
Moreover, specific readout properties of vectorial beam cou-
pling in cubic materials have found recently an important
application for detection of weak signals[20–22]. Most
probably, our method can be generalized to include the ef-
fects of polarization coupling.

One more restriction concerns with the neglect of light
absorption effects, especially the absorption gratings. Fortu-
nately, such effects are often relatively small because the
values of thekg product, characterizing the rate of the spa-
tial changes of the light amplitudes, exceed considerably the
values of the light absorption coefficient. The influence of
the absorption gratings can be taken into account within the
uniform-grating model, i.e., for weak or modest coupling
strength[17].

VI. CONCLUSIONS

A different method for description of the readout pro-
cesses for dynamic photorefractive index gratings is devel-
oped. Within this method, the readout characteristics are ex-
pressed explicitly through the input and output recording
amplitudes by making use of the symmetry properties of the
coupled-wave equations and with no use of particular mate-
rial relations for the nonlinear response. The approach
changes the status of the readout problem. It is proven to be
applicable to a broad range of particular photorefractive ef-
fects and techniques.
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